

Developments of UHF fMRI & applications in Neuroscience

biotech

Olivier Reynaud, PhD

Human Neuroscience Platform

1. Why fMRI at 7 Tesla ?

- 2. 2D-EPI vs 3D-EPI
- 3. BOLD fMRI applications
- 4. 1H fMRS (Spectroscopy)
- 5. Perfusion fMRI & others

0. functional MRI

Oxyhemoglobin (Hb)

Deoxyhemoglobin (dHb)

 $S_{BOLD} \propto exp(-TE/T_2^*)$

• BOLD functional MRI

- local \bigstar neuronal activity $\Rightarrow \bigstar O_2$ consumption $\Rightarrow \bigstar BOLD$
 - \Rightarrow \bigstar cerebral blood flow (CBF) \Rightarrow \bigstar BOLD
 - \Rightarrow \blacklozenge cerebral blood volume (CBV) \Rightarrow \blacklozenge BOLD

0. Task vs. Resting-state fMRI

Smith et al, 2009, PNAS

1. Why fMRI at 7 Tesla?

- BOLD sensitivity
 - $♠B_0 \Rightarrow ♠MR signal$
 - $▲B_0 \Rightarrow ▲$ field inhomogeneities $\Rightarrow ▲$ BOLD contrast

 $SNR_{image} \propto B_0^{-1.65}$ (Pohmann et al, 2016) $\Delta B_{dHb} \propto \chi_{dHb} B_0$

Response in the motor cortex at 1.5, 3 and 7 T

1. Why fMRI at 7 Tesla?

- BOLD sensitivity
 - $▲B_0 \Rightarrow ▲MR signal$
 - − $\mathbf{A}B_0 \Rightarrow \mathbf{A}$ field inhomogeneities $\Rightarrow \mathbf{A}BOLD$ contrast

 $SNR_{image} \propto B_0^{-1.65}$ (Pohmann et al, 2016) $\Delta B_{dHb} \propto \chi_{dHb} B_0$

- Also important with $\mathbf{A}B_0$
 - − **Specificity:** \blacklozenge T₂ of venous signal \Rightarrow smaller venous contributions
 - − **♦Optimal TE for BOLD** ⇒ less time for k-space readout, but faster volume sampling
 - $\mathbf{\forall} \mathbf{B}_{\mathbf{0}}$ homogeneity \Rightarrow $\mathbf{\uparrow}$ spatial distortions, $\mathbf{\uparrow}$ signal loss in certain regions
 - ★B₁ homogeneity ⇒ ★heterogeneity in SNR across regions
 - **A Rel. sensitivity to non-white noise sources** (physiological noise, etc.)

1. Why fMRI at 7 Tesla?

The greater signal, bold contrast and spatial specificity at ultra-high filed can be exploited to:

- a. Improve the spatial resolution (i.e., smaller voxel size).
- b. Reduce the number of trials to demonstrate robust activation.
- c. Facilitate the study of the response to *rare events*
- d. Investigate *subtle cognitive effects* (e.g., single subject differences).
- e. Improve the temporal resolution (ie TR⁻¹, sampling rate)

2. 2D-EPI vs. 3D-EPI

BOLD fMRI needs fast sampling rate & high SNR -> Echo Planar Imaging (EPI)

2. 2D-EPI vs. 3D-EPI

BOLD fMRI needs fast sampling rate & high SNR -> Echo Planar Imaging (EPI)

EPI sampling

2D EPI

3D EPI

- Fast sampling rate
- Gold standard
- Higher signal
- Long Read-out train
- Increased distortions
- TE too long for fMRI

2. 2D-EPI vs. 3D-EPI

BOLD fMRI needs fast sampling rate & high SNR **→** Echo Planar Imaging (EPI)

3D EPI

EPI sampling

2D EPI

- Fast sampling rate ٠
- Gold standard ٠
- Higher signal ٠
- Short TE ٠
- Less distortions ٠
- Sensitivity to motion •

Gold standard for 2D-EPI: Simultaneous Multi-Slice (SMS) / Multi-Band excitation

slice-GRAPPA: method overview

Setsompop et al, MRM 2012

Accelerating 3D-EPI data using undersampling

Fully sampled 3D-EPI

Phase ---->

Accelerating 3D-EPI data using undersampling

GRAPPA along PE & PE2

Poser et al, Neuroimage 2009

Accelerating 3D-EPI data using undersampling

GRAPPA along PE & PE2

Controlled aliasing (CAIPIRINHA)

Equivalence 2D / 3D-EPI

Reynaud et al, MRM 2017

Equivalence 2D / 3D-EPI

Reynaud et al, MRM 2017

Equivalence 2D / 3D-EPI

Reynaud et al, MRM 2017

High spatial resolution 3D-EPI-CAIPI data

Matrix 256*256*72 res. 0.8mm isotropic TR=2880ms (min 2s) TE=27ms GRAPPA_{PE} =4 GRAPPA_{PA} =2 CAIPI shift Δ =1

High temporal resolution 3D-EPI-CAIPI data

TR=399ms (7 segments, TR_{segment}=57ms) TE=26ms Res. $2 \times 2 \times 2 \text{ mm}^3$ matrix size 106x106x60 PPA = 1x6, $\Delta = 2$, PF_z=6/8

High temporal resolution 3D-EPI-CAIPI data

Distortion correction

3. 7T fMRI applications

RF Coil comparison

Physiological noise Characterization

Localized fMRI

Probing the Hemodynamic Response Function (HRF)

Human Brain Mapping

Simultaneous EEG-fMRI

8-Channel vs. 32-Channel Coil for High-Resolution fMRI at 7 T

Salomon et al. Brain Topogr (2014)

Fondation Campus Biotech campus biotech Geneva

+

Characterization of physiological noise in BOLD fMRI data

- Cardiac and respiratory processes have main frequencies of ~1 and ~0.3 Hz
- TR<500ms for automatic filtering of noise (including cardiac peaks)

Impact of physiological noise correction on accelerated 2D and 3D-rsfMRI data

- Clear interest in accelerating EPI data with similar 2D/3D performances (x6-8)
- Physiological noise affects mostly 3D-EPI (TR>3s)
- ICA more robust than SBC (or task) regarding physiological noise

Physiological noise in human cerebellum

Variance per ROI

- Higher respiratory influence in cerebellum (+80% vs. motor cortex)
- Cardiac fluctuations predominant in SII

Reduced Field-of-View fMRI

Multisensory facilitation using fast fMRI

MRI + jittering: Martuzzi et al., 2007, Cereb Cortex

3D-EPI-CAIPI2 mm isotropic0.4 s volume TR

3D-EPI-CAIPI timecourses reordered relative to stimulus onset and fitted double gamma function in 3 ROIs following delivery <u>of Visual, Auditory and Audio-Visual</u> stimuli. (single subject data).

HRF estimation using fast fMRI

- High spatial resolution allows the comparison of different HRFs
- Increased sensibility in a GLM might be increased through the use of an optimal model function
- The physiological basis of cerebellar BOLD responses might be better understood via comparisons to the cerebral HRF.

Tonotopic mapping in individual subjects

- **GRE-EPI**, 1.5 mm³ voxel size, TR=2s

- 28 s low-to-high pitch progression
- 10 subjects

→ Human primary auditory cortex follows the shape of Heschl's gyrus.

Tonotopic mapping in individual subjects

Impact of repetition on early-stage auditory areas

Da Costa et al., 2015, POne

- Significant repetition suppression effects within a subset of early-stage areas.
- This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale.
- Within the left hemisphere, A1 and a nonprimary area on the medial part of Heschl's gyrus are
- Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds.

Somatotopic mapping in individual subjects

- Somatotopic patterns were consistent across slices
- And across subjects in lobule V

van der Zwaag et al., Neuroimage 2013.

Somatotopic mapping in individual subjects

- Somatotopic patterns were consistent across slices
- And across subjects in lobule V

Digit labelling maps in **cerebellum** (1.2 mm³ voxel size, TR= 2.5).

Somatotopic mapping in individual subjects

- *Digit labelling maps* in **somatosensory cortex**
- 1.3 mm³ voxel size, TR=2.5 s

Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI

Mechanical stimulation

van der Zwaag et al., 2015, POne.

Investigation of Broadmann areas vs. body ownership

- Simple tactile stimulations can create a mismatch between where the touch is applied and where it is predicted (e.g. by crossing the hands or by interposing another person's finger) and induce ownership for a fake hand: *Numbness illusion (NI)*.

Martuzzi et al, Soc Cogn Affect Neurosci (2015)

Investigation of Broadmann areas vs. body ownership

- Modulation of the activity of the BA 2 representation of the stroked hand and of the BA 1 representation of the stroking hand.
- ➔ The high degree of somatosensory specialization in S1 extends to bodily self-consciousness.

Brain system for mental orientation in space, time, and person

1.7 mm³ voxel size, TR=2.5 s

Cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex.

Brain system for mental orientation in space, time, and person

Fig. 3. Overlap between activations in the space, time, and person domains. (A) Overall orientation-related activity in a representative subject, identified by contrasting activity between each orientation domain and the lexical control task, showing overlap between regions (P < 0.05, FDR-corrected, cluster size >20 voxels). (B) Group average of the percent of overlap between tween active voxels in each orientation domain, demonstrating a partial overlap between domains (for group-level results, see Figs. S3B and S4B).

Sympathetic Nerve Impact on Blood Pressure

Hypothesis:

A stress test which increases BP should change the activity of the medulla region of the brainstem

Brainstem analysis:

Hendricks-Balk et al, Frontiers in Neuroscience 2020

Simultaneous EEG-fMRI at 7 T: Artifact prevention and safety assessment

- EEG setup optimization can result in significant noise reductions for EEG recordings.
- Optimized EEG-fMRI recordings can be safely performed in humans at ultra-high field.

Jorge et al, Neuroimage 2015

Simultaneous EEG-fMRI at 7 T: Artifact prevention and safety assessment

- Alpha-wave modulations and VEPs can be measured with adequate sensitivity.
- High quality BOLD-sensitive MR images can be obtained from the visual cortex.

Jorge et al, Neuroimage 2015

Simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion

Four electrodes are non-permanently adapted to record only magnetic induction effects.

Combined with ICA, 74% power reduction and an 86% increase in trial consistency.

Pre-surgical mapping on epileptic patients

Pre-surgical mapping on epileptic patients

Pre-surgical mapping on epileptic patients

4. fMRS - Single voxel ¹H MRS at 7T

Functional MRS during visual stimulation

Schaller et al. 2013, J Neurosci Res

Time courses of metabolic changes during stimulation

- 6 subjects

- 24 scans (4 scans/subject) averaging

- CRLB<25% for Glu, Lac, Asp and Glc- Time resolution of 20s

5. Perfusion fMRI

B0+B1 inhomogeneities

RF coverage

High SAR deposition

Importance of timing and inversion efficiency

В

Α

Distance along Head-Feet direction (mm)

Single subject ASL fMRI at 7 Tesla

bSSFP fMRI at 7 Tesla

Why bSSFP ?

No distortions but signal drop-outs (transition bands)

Highest SNR / unit time (in 3D mode)

Proof of concept of 2D bSSFP for localized fMRI

Reynaud et al, JMR 2019

bSSFP fMRI at 7 Tesla

Reynaud et al, JMR 2019

More than just fMRI

1 mm resolution (1000 nl)

500 µm resolution (125 nl)

350 µm resolution (43 nl)

Gallichan et al. 2015, MRM

HUMAN NEUROSCIENCE DLATEORM humanneuroscience@fcbg.ch

Acknowledgements: Rolf Gruetter Wietske van der Zwaag Domenica Bueti Sandra DaCosta José Marques João Jorge Yohan Boillat Daniel Gallichan Lijing Xin Ileana Jelescu H N P Human Neuroscience Platform

campus biotech